
UBC at Slot Filling TAC-KBP 2010

Ander Intxaurrondo, Oier Lopez de Lacalle, Eneko Agirre
aintxaurrond001@ikasle.ehu.es, oier.lopezdelacalle@ehu.es,

e.agirre@ehu.es

IXA NLP Group, University of the Basque Country, Donostia, Basque Country

Abstract. This paper describes our submissions for the slot filling and surprise
slot filling tasks of TAC-KBP. The system is based on the distant supervision
strategy presented by [3]. We did a straightforward implementation, trained us-
ing snippets of the document collection containing both entity and filler from the
KB provided by the organizers (a subset of Wikipedia infoboxes). Our system
does not use any other external knowledge source, with the exception of closed
lists of words for religion, causes of death, charges and religious/political affilia-
tion, plus the use of Geonames to distinguish between cities, countries, states and
provinces. We submitted three runs based on different post-processing options of
the output of our classifiers, with results below the median. We did expect low
results, as our system is still under development, and we still have plenty of room
for improvement.

1 Introduction

This paper describes our participation in the TAC-KBP 2010 slot-filling and surprise
slot-filling tasks. Our system is a straightforward implementation of a distant super-
vision system [3]. The system was trained using snippets of the document collection
containing both entity and filler from the KB provided by the organizers (a subset of
Wikipedia infoboxes). Our system does not use any other external knowledge source,
with the exception of closed lists of words for religion, causes of death, charges and
religious/political affiliation, plus the use of Geonames to distinguish between cities,
countries, states and provinces.

The paper is structured as follows. In Section 2 the tasks of slot filling and sur-
prise slot filling will be described. In Section 3 the main components for the distant
supervision system will be explained, including slot preparation, extraction of training
examples, classifiers and the post-processing to produce the output. Next, we will fo-
cus on the results obtained by the three runs for slot filling, and for the unique run for
surprise slot filling. Section 5 is devoted to error analysis, and finally, in Section 6, we
draw some conclusions.

2 Slot Filling

The slot filling task in TAC-KBP consists on learning a set of predefined relation-
ships and attributes for named entities (people or organizations) based on a pre-existing



knowledge base extracted from Wikipedia Infoboxes. The learned information is then
used to extract new facts from a large document base (1,7 million documents) for a
set of target entities. The main objective is thus to feed Wikipedia Infoboxes with new
additional values extracted from the document collection.

When we developed this system, in 2010, the TAC-KBP track was on its second
edition.

The information in the KB is organized around entity-slot-filler triples. An entity is
the name of the article of Wikipedia, and can include people or organizations. The slot
is the type of information of the entity, for example the birthplace of a person. The filler
is the value of the slot. An example of an entity-slot-filler triple could be Paul Newman
- date of birth - January 26, 1925. The target slots were defined by the organizers,
including which are possible values, as made explicit in the task guidelines.

2.1 Surprise Slot Filling

The surprise task was optional in TAC-KBP 2010. In this task, participants had to find
information for new entities and new slots, specified by TAC-KBP organizers. The main
idea of the task consisted on giving portability to the information extraction systems
developed by participants.

3 Distant supervision system

We tried a straightforward strategy for slot filling, designed around distant supervi-
sion [3] and joint work by Stanford and UBC in TAC-KBP 2009 [1]. Our system is
very similar to the later, with the difference that we used freely available tools and that
our system is still under development.

Our systems has a training phase and an application (or test) phase. For training we
perform the following steps:

– Slot preparation, including the extraction of entity-slot-filler triples from infoboxes,
mapping them to official KB slots, and assigning a named-entity type or a closed
list depending on the expected fillers.

– Example extraction, where we retrieve text fragments which include both the entity
and filler in the triples

– Training of classifiers using the extracted examples

When applying the system we perform the following steps:

– Search of examples of mentions to the target entities
– Identification of potential fillers for possible slots
– Applying the classifiers to each filler in each mention
– Collation of results, where for each entity and slot the system returns the filler

with maximum weight from classifiers1. When no filler is classified positively, the
system returns NIL.

1 We tried slightly different post-processing strategies in the three submissions (cf. Section 4)
following this idea.



Fig. 1. The architecture of the slot filling system. TRAIN: Extraction of KB triples, which are
used to acquire training examples for each slot (1..n slots) from the document base, followed
by featurization and binarization. We finally train n classifiers, one per slot. TEST: examples
containing mentions to the target entities (m entities) are retrieved from the document base (m
target entities). Potential fillers are identified, and then each example containing one entity-filler
is classified, obtaining a weighted prediction for each slot. Predictions are collated and the result
returned.



For the Surprise Slot Filling task, the organizers did not provide any training triples
from Wikipedia infoboxes, and training examples were directly provided. Given the
very small number of examples provided, we looked for additional examples containing
those entity-filler pairs in the document base.

The development of the system did not involve manual curation of data, except as-
signing named entity classes (e.g., date, person) or closed lists of fillers (e.g., religions,
countries, products, diseases) to each slot.

Below, we first present the details of how we prepared the slot information, then
how we extracted the textual fragments (examples) of entity occurrences, followed by
the method to train the classifiers. The application of the classifier to produce the slot
filling results is explained next.

3.1 Slot Preparation

In order to prepare the training data for the slot classifiers, we first extracted entity-slot-
filler triples from Wikipedia infoboxes using the mapping provided by the organizers.

As part of slot preparation, different slots based on the expected NE type were
categorized (see Table 1: ORG, PER, LOC, DATE, and NUMBER. The NE type is used
to help assign ambiguous infobox values to the appropriate slot, as well as to identify
potential fillers for a text fragment for a slot. For org:website, regular expressions
were used; nothing was done for per:title.

In the Surprise Slot Filling task, closed lists of fillers were used for all new slots.

NE (ORG) org:alternate names, org:founded by, org:member of,
org:members, org:parents, org:shareholders, org:subsidiaries,
per:employee of, per:member of, per:schools attended

NE (PER) org:founded by, org:shareholders,
org:top members/employees, per:alternate names, per:children,
per:other family, per:parents, per:siblings, per:spouse

NE (LOC) org:headquarters, per:place of birth, per:place of death,
per:residences

NE (DATE) org:dissolved, org:founded, per:date of birth, per:date of death
NE (NUMBER) org:number of employees/members, per:age

Closed List org:political/religious affliation,
per:cause of death, per:charges, per:origin, per:religion

RegExp org:website
NIL per:title

Table 1. Mapping of slot to NE type or closed list. LOC slots belong to the 2009 TAC-KBP Slot
Filling task, these slots will be later adaptted to fit with the 2010 task (see section 3.4)

Due to the ambiguity and noisiness of the infobox to slot mapping, we processed
the infobox values for the entity-slot-filler triple as follows:

– We run a named-entity recognition and classification system [2] on the entity itself
to determine if the entity is ORG/PER. Because the slots are specific for the two
entity types, we can safely ignore any entity that is not ORG/PER. Besides, note
that some entities in the knowledge base have been tagged as UNK by the organizers
(instead of ORG/PER). We also run NER on this to determine the entity type.



– Run NER on infobox fillers to extract fillers for ambiguous slots. The mapping from
the Wikipedia infobox to the TAC-KBP slots can be ambiguous. For instance, the
Wikipedia infobox “born” can map to date of birth, country of birth,
stateorprovince of birth and city of birth:

Carrie Underwood
Born March 10, 1983 (1983-03-10) (age 6) Muskogee, Oklahoma, USA

After obtaining the entity-slot-filler triples, we extract examples from the document
base for training and development.

3.2 Example Extraction

The training examples were drawn from the 2009’s TAC KBP Entity Linking Sample
Corpus. Due to time limitation we were not able to build a training set based on the
2010 document base. We indexed the document base using the KBP Toolkit search tool
provided by NIST, which had Lucene on its base.

In order to extract the training examples, we used the known entity and filler pairs,
and looked for occurrences of these in the document base. Exact string match is used
for both the entities and fillers. We looked for examples with up to 10 tokens between
the entity and filler, and five words to surrounding the entity and filler. The examples
are of the form:

5w entity 0-10w filler 5w
5w filler 0-10w entity 5w

where Nw corresponds to N words/tokens; for the middle span, this ranged from zero
to ten.

Note that because we look for exact matches for the entity and filler, we miss exam-
ples that contain variations of the entity or filler strings.

For target entities for slot filling, we extracted examples that matched the string of
the entity exactly. These examples are of the form:

30w entity 30w

Similarly, we miss examples that use different names for the target entity.

3.3 Training the Classifiers

For each slot, we trained a binary classifier that takes a text fragment with the entity and
potential filler and decides whether or not the potential filler is an actual filler for the
slot. We used Support Vector Machines (SVM) trained on the entity-slot-filler exam-
ples extracted from the document base (cf. Section 3.2). As explained in the previous
section, the development of the system was done using the TAC-KBP 2009 dataset. Ba-
sically, our development consisted of feature set selection and setting of the SVM cost
parameter (C).



For positive examples, we used examples containing the known entity and filler
pairs based on slots derived from Wikipedia infoboxes. To avoid misleading infoboxes,
we only used examples that had an entity type matching the entity type of the slot.

We did not use the Participant Annotation samples as positive examples due to time
problems.

For negative examples, we distinguish between persons and organizations. For in-
stance, given a specific classifier of slot i for person entity, the rest of the person slots
were considered as negative examples. We followed the same strategy for slots of orga-
nization entities.

Regarding learning features, we considered three sets of features in order to develop
the final system. The first set was based on the features introduced by Mintz et al. [3].
The second set was based on the features proposed by Zhou et al. in [4]. Finally, the
third feature set was build by joining the previous two sets in one.

This way, for the first set we extracted the following feature types:
– The sequence of words between the entity and filler (10 words maximum).
– The part-of-speech tags of these words.
– The name-entity types of the entity and filler.
– A window of k words to the left of the first entity/filler and their part-of-speech tags
– A window of k words to the right of the second entity/filler and their part-of-speech

tags.
Each lexical feature consists of a conjunction of all this components. We generate

a conjunctive feature for each k ∈ {0, 1, 2}. Thus, Table 2 shows the resulting lexical
feature (note that the each row in the table represents a single lexical feature).

ENTITY - SLOT - FILLER : Kim Il-Sung - date of birth - April 15, 1912
SPAN: Kim Jong-Il’s late father <entity> Kim Il-Sung </entity> , who was born <filler> April 15, 1912 </filler>.

LEFT WINDOW NE1 MIDDLE NE2 RIGHT WINDOW

[] PERSON ,/, who/WP was/VB born/VB DATE []
[father/NN] PERSON ,/, who/WP was/VB born/VB DATE []

[late/JJ father/NN] PERSON ,/, who/WP was/VB born/VB DATE []
. . .

Table 2. Result of the conjuntive lexical features.

For the second-type features (those based on [4]), we extracted the following feature
types:

– A flag indicating there is no word between the entity and filler.
– A flag indicating there is only one word between the entity and filler.
– The first word after the first-coming entity/filler.
– The last word before the second-coming entity/filler.
– All words between the entity and filler, except the first and last.
– The first word before the first-coming entity/filler.
– The second word before the first-coming entity/filler.
– The first word after the second-coming entity/filler.



– The second word after the second-coming entity/filler.
– The name-entities of the entity and filler.

Finally, the third feature set contained the features from both [3] and [4]. Among all
three features set, the best results were obtained deploying the first set (those introduced
in [3]). We think that this is because the conjunction of features yields high-precision
features (but low-recall). With a small amount of data, this approach would be problem-
atic, since most features would only be seen once, rendering them useless to the classi-
fier. Since we use large amounts of data, even complex features appear multiple times,
allowing our high precision features to work as intended. For Surprise Slot-Filling task
we use the second set of features [4]. Due to the lack of training data, it is unlikely
that complex features occur enough times for learning. So that we would expect higher
recall by the use of independent features.

We used svmperf 2, which is an extension of svmlight to manage large sets of data,
as implementation of a linear SVM classifier. We tried different values of C to tune the
classifiers. The used values of C were 0.01, 1, 10, 20, 50, 100 and 200. We obtained the
best results with C = 10 in the development dataset (cf. Section 3.2).

3.4 Applying the classifiers

Once the classifiers was trained, we used them to determine the most likely fillers for
the target entities. Using the examples extracted from the document base for each entity,
we identified potential fillers using a NER module or closed lists of strings (see Table
1). After identifying potential fillers within the span, we expanded the examples for
target entities in entity-filler pairs (see Figure 1, test part). For each entity-filler pair
extraction of features was carried out, and the prediction of the classifier in the slot was
obtained deciding whether the filler was positive or negative.

For each entity-slot, we selected the positive the top-scoring filler for single-valued
slots. Depending on the run (cf. Section 4) for multi-valued slot we returned the list of
all positive fillers. If a slot had all the fillers with negative predictions, the system would
return a NIL value for that slot (see Figure 1, “Output” part).

In the 2009 edition of TAC-KBP, slots like place of birth, place of death,
residences and some others relation with locations were used. In 2010, this slots
were separated into 3 parts; for example, instead of place of birth we got the fol-
lowing slots: country of birth, stateorprovince of birth and city of birth.
We distinguish between countries, states and cities, after applying the classifiers . We
used the GeoNames geographical database3 to determine if the filler value was a city,
country, state or province; also taking control if the filler value contains, for example, a
country and a city.

In cases like the Carrie Underwood example mentioned before, our system will de-
termine that “March 10, 1983” is a DATE while “Muskogee”, “Oklahoma” and “USA”
are LOC. We then map “March 10, 1983” to the date of birth slot “Muskogee” to
the city of birth slot, “Oklahoma” to the stateorprovince of birth slot,
and “USA” to the country of birth slot.

2 http://www.cs.cornell.edu/People/tj
/svm light/svm perf.html

3 http://www.geonames.org



4 Results

Due to the limited time we had to build the entire slot-filling system, we were not able
to tune our system. We submitted three runs based on different post-processing of the
output of the classifiers. For the first run (UBC1), we submitted a basic system which, for
each entity and slot, takes the filler that maximizes the prediction of the slot classifier.
The system returns NIL if the SVM prediction is negative for all potential fillers within
a slot.

In the second run (UBC2), for each entity, if its slot is single-valued we return the
potential filler that maximizes the prediction of the classifier, as we did in the first
run. But if the slot type is multi-valued, the system returns all positive potential fillers.
For this submission we removed the slots that had to be ignored, as specified by the
organization.

Finally, in the last run (UBC3), for each entity, we run all the slots looking for the
one which maximizes the entity-slot-filler triple (as in UBC1 and UBC2). Depending on
the type of the slot, it is treated differently. Given an entity, for each we first check if
the slot is single-valued. In that case, we select the filler which maximize the slot. In the
case that the slot is a location slot (org:headquarters, per:place of birth,
per:place of death, per:residences), we select up to three countries, cities
or states above a threshold of prediction confidence given by the classifiers. For the rest
of the multiple valued slot we return the filler that maximizes the triple, in the same
way we did for unique valued. Based on some preliminary results on the development
dataset, we set the confidence threshold in −0.8 in order to increase the recall of the
system. Again, we ignored some entity-slots, as specified by the organization.

MAIN TASK SURPRISE TASK
UBC1 UBC2 UBC3 median UBC median

# filled slots in key 1034 1034 1034 505
# filled slots in response 37 6398 109 3
# correct non-NIL 1 3 5 1
# incorrect/spurious 35 6380 103 2
# inexact 0 9 0 0
Recall 0.0009 0.0029 0.0048 0.1412 0.0019 0.1544
Precision 0.0270 0.0004 0.0458 0.2141 0.3334 0.5032
F1 0.0018 0.0008 0.0087 0.1054 0.0039 0.2363

Table 3. TAC 2010 KBP Slot Filling Results.

Table 3 shows in the first three columns the official results in TAC 2010 KBP Slot
Filling task, followed by the median. Although all the runs are very low, they show that
the more sophisticate is the post-processing the more accurate are the results.

The last columns show the results for the Surprise slot-filling task. For this subtask
we post-process the output of the classifiers as we did for UBC1: We returned for each
entity and slot the filler with the maximum weight given by the SVM classifier.



5 Analysis

Although we were expecting low results, the obtained results are far from satisfactory.
This lead us to analyze the outputs of our system. We next list some issues, and their
possible solutions.

– Lack of positive examples. There were some slots without no positive examples
in the training set.

– Noisy positive examples. Many of the gathered training examples were inaccurate
for appropriate automatic learning. This means that we should apply some kind of
filtering or instance weighting technique to get rid of useless examples.

– Negative examples. We generated too many negative example producing an un-
balanced training set. Unbalanced training sets introduce undesirable biases in the
learning process. Smart filtering of negative examples or weighted SVM classifiers
might be a desirable solution to the problem. In Table 4 is possible to compare the
number of tuples, positive spans and negative spans between slots.

– Post-processing. We treated the output of the classifiers equally. In other words,
we did not take into account that each slot would need to tune its own threshold
independently. This caused the system to select too many fillers for some slots like
per:title. In addition, the post-processing phase could be improved by using
semantic classes to constrain the final output of our system.

– Suprise slot filling task. The slots provided for the surprise slot filling task did
not appear in Wikipedia infoboxes, so we could not apply our distant supervision
strategy. On the other hand, the training provided by the organizers data was too
small to train our classifiers.

slot triples pos. examples neg. examples slot triples pos. examples neg. examples
per:age 54 131 99790 org:alternate names 1121 6690 182235
per:alternate names 590 1755 98166 org:dissolved 227 1486 187439
per:cause of death 0 0 99921 org:founded by 253 1225 187700
per:charges 10 25 99896 org:founded 1243 5379 183546
per:children 157 598 99323 org:headquarters* 13352 93277 95648
per:date of birth 146 249 99672 org:member of 665 3924 185001
per:date of death 83 162 99759 org:members 137 855 188070
per:employee of 1676 13871 86050 org:number of employees/members 422 2843 186082
per:member of 2623 18440 81481 org:parents 4304 31233 157692
per:origin 207 1529 98392 org:political/religious affiliation 1145 7268 181657
per:other family 11 13 99908 org:shareholders 0 0 188925
per:parents 11 77 99844 org:subsidiaries 87 348 188577
per:place of birth* 4613 24426 75495 org:top members/employees 6109 31502 157423
per:place of death* 1125 5554 94367 org:website 1265 2894 186031
per:religion 223 857 99064
per:residences* 2835 17256 82665
per:schools attended 83 156 99765
per:siblings 6 10 99911
per:spouse 776 3391 96530
per:title 2302 11416 88505
Table 4. Statistics for all slots, including number of triples, positive and negative examples. The
slots with an asterisk (*) belong to the 2009 TAC-KBP Slot Filling track, before separating them
to cities, states, provinces or countries.



6 Conclusions

We have participated with a preliminary implementation of a distant supervision sys-
tem. The idea was to train the system using snippets of the document collection con-
taining both entity and filler from the KB provided by the organizers (a subset of
Wikipedia infoboxes). Our system does not use any other external knowledge source,
with the exception of closed lists of words for religion, causes of death, charges and
religious/political affiliation, plus the use of Geonames.

Our main goal was to setup a preliminary system, and we submitted three runs based
on different post-processing options of the output of our classifiers, with results below
the median.

The low results of our system in the main slot filling task, although expected, are far
from satisfactory. The core Information Extraction module of our system is preliminary
and buggy, with a few unsolved issues. One of the lessons that we have learned is
that we first need to develop a traditional Information Extraction system and evaluate
it on standard datasets (e.g. ACE relation detection task). We would then explore the
challenges posed by the slot filling task proper, which include issues like getting false
positive examples for training, or treating each slot as a separate problem.

Regarding the surprise slot filling exercise, the organizers released a few training
examples for each target slot, where the examples where snippets of text where the
entity, slot and filler were explicitly attested. Given the spirit of the main task (where
a large number of entity-slot-filler triples from the KB had been made available), we
were expecting such entity-slot-filler examples for the surprise task as well. This might
partially explain our low results.
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